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Major depressive disorder (MDD) is a leading cause of disability worldwide with one-third of cases 

being treatment resistant1. Symptom heterogeneity suggests variability across affected brain 

networks, prompting efforts to personalize circuit-based neuromodulatory interventions. For 

example, personalized deep brain stimulation (DBS) has been achieved by selecting different 

treatment targets based on phenotypes or mapping stimulation responses1. However, DBS is 

invasive, and the stability of optimal long-term treatment within a dynamic and adaptive brain 

remains unknown. Noninvasive approaches, such as transcranial magnetic stimulation (TMS), 

have shown promise in modulating putative mood networks but are unable to target deeper 

subcortical regions.  

 

Transcranial ultrasound stimulation (TUS) or low intensity focused ultrasound is an emerging, 

non-invasive method with millimeter spatial specificity and a unique ability to achieve deep 

subcortical neuromodulation. TUS can reversibly modulate brain networks and confer durable 

behavioral effects2,3. Preliminary studies suggest that TUS applied to classical TMS and DBS 

targets can improve anxiety, worry, avoidance and mood4–6. To examine whether dynamically 

steered TUS (Fig. 1A) may identify personalized therapeutic subregions in MDD, we employed 

dual-phased array crossbeam focusing to stimulate subcortical mood-related circuitry. 

 

A 46-year-old man with treatment-resistant depression underwent TUS interventions aimed to 1) 

assess the therapeutic potential of candidate brain regions based on self-report and 2) objectively 

investigate the effects of a top candidate target using neuroimaging. His major depression began 

ten years prior, characterized by anhedonia, lethargy, poor concentration, and hopelessness 

(baseline 6-item Hamilton Depression Rating Scale (HAMD-6) rating of 11). He had failed over 

10 different oral agents and psychotherapy. He had transient positive effects from both 

electroconvulsive therapy and TMS, but discontinued treatment due to rapid relapses, cognitive 

decline, and other side effects, e.g. headache.  
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The subject underwent a three-phase assessment: an exploratory phase, candidate brain region 

testing phase, and top-candidate testing with neuroimaging phase. Following an exploratory 

phase (Supplementary Methods), three regions were targeted for serial testing: ventral capsule 

(VC), bed nucleus of stria terminalis (BNST), and anterior nucleus of the thalamus (ANT). The top 

candidate region was then compared to an unfocused control, and resting-state fMRI was 

collected post-stimulation. Behavioral outcomes were collected using visual-analog scales 

(VAS) of depression and the 6-item Hamilton Depression Rating Scale (HAMD-6). TUS was 

delivered using an ATTN201 wearable device, equipped with dynamic steering 

(Supplementary Methods; 128 transducer elements; Attune Neurosciences, Inc., San 

Francisco, CA). Stimulation parameters were consistent across all candidate regions: 500 

kHz fundamental frequency, 25 Hz pulse repetition frequency, 13% duty cycle, and 300s (5 

min) pulse train duration. Stimulation was bilateral, alternating between left and right 

lateralized regions every 15 minutes, i.e. 10 min inter pulse train interval. The unfocused 

control stimulation constituted the same acoustic energy at the array surface but without a 

deep brain focal pattern, to approximate the same acoustic and peripheral experience as 

focal stimulation. Eight total pulse trains (four left and four right) were performed to complete 

a full session (Supplementary Methods); each followed by a 24-hr washout period. Figure 1B 

shows the simulated crossbeam ultrasound intensities for right lateralized regions overlaid 

on T1-weighted MR images. Simulated spatial peak pulse average intensity (ISSPA) ranged 

from 42.2 to 50.2 W/cm2 at the target for active conditions and <2 W/cm2 at any given target 

for the unfocused control. This study was approved by the Advarra Institutional Review 

Board, and the subject provided written informed consent to complete this study. 

 

The intermittent TUS protocol was well tolerated by the participant without any adverse effects. A 

post-stimulation MRI scan did not reveal any structural changes, including edema or 
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hemorrhage. Over serial stimulations, a reduction in VAS-depression and HAMD-6 was observed 

across all stimulation conditions (Fig. 1C-F). When compared to the unfocused control condition, 

ANT stimulation further reduced VAS-D scores over time (t(2)=-8.87, p=0.013, one sample t-test; 

Fig. 1D), in contrast to VC/BNST stimulation (t(2)=-2.6, p=0.152). Similar trends were observed 

in the HAMD-6 scores but without significance. An example spontaneous verbal report following 

an exploratory ANT stimulation day included: “I think I'm having less obsessive-compulsive 

thoughts... when I start getting on myself for something it's just hard to get off, but I feel like I've 

been moving through my thoughts a little bit better," suggesting a reduction in ruminative thinking. 

 

We subsequently evaluated the effects of stimulation on functional connectivity within the default 

mode network (DMN), a network of brain regions implicated in self-reflection and rumination7. At 

baseline, resting-state DMN connectivity was hyperconnected in this subject as compared to that 

of aged-matched healthy individuals (Fig. 2H; n = 84; age, mean = 43.96 y, SD = 18.3 y; sex, 41 

F). Resting-state fMRI following double-blinded ANT stimulation showed a reduction in DMN 

connectivity when compared to the atypically high levels seen in the baseline condition; smaller 

reductions in DMN connectivity compared to baseline were also seen following the unfocused 

condition (Fig. 1G, H; see Figure 1S for additional axial cuts). Notably, subjective sleepiness was 

not affected by stimulation, rated as a 4 on the Stanford Sleepiness Scale across the ANT and 

unfocused conditions, and is therefore unlikely to explain the changes in DMN connectivity. 

 

Here, we demonstrate that thalamic TUS has the potential to elicit a subjective reduction in 

depression symptoms and is associated with decreases in DMN connectivity. In contrast, the 

VC/BNST target did not statistically reduce symptom scores. Symptom trajectories suggested 

improvement over hours with intermittent stimulation, as compared to other non-invasive 

methods, e.g. TMS, which evolve over days to weeks. Prior studies applying TUS to depressed 

individuals have targeted the subgenual cingulate4 and fronto-temporal cortex5. Here, we 
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investigated the effects of TUS on two subcortical targets: VC/BNST and ANT. In contrast to 

VC/BNST, ANT is not a common target for DBS in MDD but has been implicated in emotional 

regulation by way of its direct connectivity with anterior cingulate and prefrontal cortex8. While 

ANT DBS has been linked with increased rates of depressive adverse events8, we find that ANT 

TUS led to an improvement in depressive symptoms, highlighting the distinct mechanisms of 

these two neuromodulation modalities. Notably, this participant later underwent a clinical trial 

involving intracranial DBS mapping (NCT04004169), for which VC/BNST yielded the strongest 

acute mood responses; stimulation mapping did not include thalamic implantation.  

 

It is intriguing to consider that symptom improvement associated with thalamic TUS was causally 

related to decreases in DMN connectivity, shown to be hyperconnected in this individual and 

generally overactive in MDD7. Current depression treatments, ranging from medications (SSRIs, 

psychedelics) to mindfulness, have been associated with a reduction in DMN connectivity9. 

Indeed, nodes where neuromodulation alters DMN activity/connectivity have been proposed as 

defining potential interventional hubs in MDD1. Furthermore, the DMN connectivity has been 

implicated in a broad set of conditions such as OCD, anxiety, and ADHD highlighting the potential 

impact across mental health conditions. Prior lesion and DBS-based studies have suggested that 

ANT may modulate DMN activity10. Here, we confirm this finding using a novel, non-invasive 

method. Further studies are needed to confirm the generalizability of our findings in MDD and to 

understand whether our results are due to selective engagement of ANT or nearby thalamic 

structures, e.g. dorsal medial thalamus, which are also within the ultrasound field. Ongoing further 

studies are required to assess TUS parameterization to improve treatment efficacy, as well as 

effects of stimulation over longer durations of time. 
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Figure 1. ANT stimulation reduces VAS depression and suppresses default mode network 
connectivity. A) Depiction of three phase experimental design. TUS study device illustrated in 
inset. B) Simulated field of TUS crossbeam intensities overlaid on a sagittal and coronal cross-
section of T1-weighted MRI coronal for the right-lateralized VC (top row; outlined in white), ANT 
(middle row; outlined in red), and Unfocused (bottom row) conditions. Note that the VC and ANT 
masks are non-overlapping; the mask of each of the other active condition is not seen in the 
respective cross-section. C, E) Trajectories of VAS depression and HAMD-6 over time grouped 
according to each replicate stimulation condition: VC/BNST (left), ANT (middle), and unfocused 
(right). The color codes represent each day of testing an individual condition. The x-axis 
represents session time, where the start of each visit equates time 0. The y-axis represents the 
change in symptom scores over a stimulation session from the pre-stimulation survey for any 
given day. Each point represents a survey assessment taken during the span of the stimulation 
protocol. Survey assessments were taken immediately following each 5 min stimulation pulse 
train and after each 10 min inter pulse train interval.   D, F) Averaged change in VAS depression 
and HAMD-6 score per hour for each condition: VC/BNST (left) and ANT (right). The unfocused 
stimulation condition is given by the dotted gray line. The ANT stimulation condition statistically 
reduced the averaged VAS depression per time, as compared to the unfocused control (p = 
0.0127; one sample t-test). G) Visualization of DMN connectivity based on a medial prefrontal 
cortex seed; ANT stimulation reduces DMN connectivity as compared to the baseline and 
unfocused conditions (Fisher-transformed correlation coefficient units). H) Normalized probability 
density function of anterior-posterior DMN connectivity in a group of healthy controls (grey 
histogram bars) and overlaid black normal distribution curve. Colored bars indicate baseline/pre-
stimulation (green), ANT (orange), and unfocused (purple). Note that unfocused condition 
occurred the following day, i.e. 24-hrs, after ANT stimulation; the extent to which wash-out of 
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stimulation had occurred remains unknown. Abbreviations: ventral capsule (VC); bed nucleus of 
stria terminalis (BNST); anterior nucleus of the thalamus (ANT); visual analog scale (VAS); 
Hamilton Depression Rating Scale (HAMD); medial prefrontal cortex (mPFC); posterior 
cingulate cortex (PCC)  
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